Producer Theory

Econ 3030

Fall 2025

Lecture 14

Outline

- Firms as Production Sets
 - Production Sets and Production Functions
 - Profits Maximization, Supply Correspondence, and Profit Function
 - Cost Minimization

Producers and Production Sets

Producers buy inputs and use them to produce and sell outputs to maximize profit.

- The plural is important because most firms produce more than one good.
- The standard undergraduate textbook description focuses on one ouput and a few inputs (two in most cases).
 - Production is described by a function that has inputs as the domain and output as the range like q = f(K, L)
- We use a more general, abstract, description of production.
- Either way, the first step of the process is to describe the technology that is available to a firm.

Producers and Production Sets

Producers buy inputs and use them to produce and sell outputs to maximize profit.

Definition

A production set is a non-empty set $Y \subseteq \mathbb{R}^n$.

Notation

- $\mathbf{y} = (y_1, ..., y_N) \in Y$ denotes feasible production (input-output) vectors.
 - Outputs are non-negative numbers and inputs are non-positive numbers:
 - $y_i \le 0$ when i is an input, and $y_i \ge 0$ if i is an output.

Production Set Properties

Definition

 $Y \subseteq \mathbb{R}^n$ satisfies:

- no free lunch if $Y \cap \mathbb{R}^n_+ \subseteq \{\mathbf{0}_n\}$;
- possibility of inaction if $\mathbf{0}_n \in Y$;
- free disposal if $\mathbf{y} \in Y$ implies $\mathbf{y}' \in Y$ for all $\mathbf{y}' \leq y$;
- irreversibility if $\mathbf{y} \in Y$ and $\mathbf{y} \neq \mathbf{0}_n$ imply $-\mathbf{y} \notin Y$;
- nonincreasing returns to scale if $y \in Y$ implies $\alpha y \in Y$ for all $\alpha \in [0,1]$;
- nondecreasing returns to scale if $y \in Y$ implies $\alpha y \in Y$ for all $\alpha \ge 1$;
- constant returns to scale if $\mathbf{y} \in Y$ implies $\alpha \mathbf{y} \in Y$ for all $\alpha \geq 0$;
- additivity if $y, y' \in Y$ imply $y + y' \in Y$;
- convexity if Y is convex;
- Y is a convex cone if for any $\mathbf{y}, \mathbf{y}' \in Y$ and $\alpha, \beta \geq 0$, $\alpha \mathbf{y} + \beta \mathbf{y}' \in Y$.

Draw Pictures.

Production Set Properties Are Related

• Some of these properties are related.

Question 1, Problem Set 7.

Prove that Y satisfies additivity and nonincreasing returns if and only if it is a convex cone.

Question 2, Problem Set 7.

Prove that for any convex $Y \subset \mathbb{R}^n$ such that $\mathbf{0}_n \in Y$, there is a convex $Y' \subset \mathbb{R}^{n+1}$ that satisfies constant returns to scale such that $Y = \{\mathbf{y} \in \mathbb{R}^n : (\mathbf{y}, -1) \in \mathbb{R}^{n+1}\}$.

Production Functions

Let $\mathbf{y} \in \mathbb{R}_+^m$ denote outputs while $\mathbf{x} \in \mathbb{R}_+^l$ represent inputs; if the two are related by a function $f: \mathbb{R}_+^l \to \mathbb{R}_+^m$, we write $\mathbf{y} = f(\mathbf{x})$ to say that \mathbf{y} units of outputs are produced using \mathbf{x} amount of the inputs.

- When m=1, this is the familiar one output many inputs production function.
- Production sets and the familiar production function are related.

Production Functions and Production Sets Are Related

Let $\mathbf{y} \in \mathbb{R}_+^m$ denote outputs while $\mathbf{x} \in \mathbb{R}_+^l$ represent inputs; if the two are related by a function $f: \mathbb{R}_+^l \to \mathbb{R}_+^m$, we write $\mathbf{y} = f(\mathbf{x})$ to say that \mathbf{y} units of outputs are produced using \mathbf{x} amount of the inputs.

Question 3, Problem Set 7.

Suppose the firm's production set is generated by a production function $f: \mathbf{R}_+^I \to \mathbf{R}_+^m$, where \mathbf{R}_+^I represents its I inputs and \mathbb{R}_+^m represents its I outputs. Let

$$Y = \{(-\mathbf{x}, \mathbf{y}) \in \mathbb{R}^{I}_{-} \times \mathbb{R}^{m}_{+} : \mathbf{y} \leq f(\mathbf{x})\}.$$

Prove the following:

- Y satisfies no free lunch, possibility of inaction, free disposal, and irreversibility.
- ② Suppose m=1. Y satisfies constant returns to scale if and only if f is homogeneous of degree one, i.e. $f(\alpha \mathbf{x}) = \alpha f(\mathbf{x})$ for all $\alpha \geq 0$.
- 3 Suppose m = 1. Y satisfies convexity if and only if f is concave.

Transformation Function

• We can describe a production set using a particular function.

Definition

Given a production set $Y\subseteq\mathbb{R}^n$, the transformation function $F:Y\to\mathbb{R}$ is defined by

$$Y = \{ \mathbf{y} \in Y : F(\mathbf{y}) \le 0 \text{ and } F(\mathbf{y}) = 0 \text{ if and only if } \mathbf{y} \text{ is on the boundary of } Y \};$$
 the transformation frontier is $\{ \mathbf{y} \in \mathbb{R}^n : F(\mathbf{y}) = 0 \}$

Definition

Given a differentiable transformation function F and a point on its transformation frontier \mathbf{y} , the marginal rate of transformation for goods i and j is given by

$$MRT_{i,j} = \frac{\frac{\partial F(\mathbf{y})}{\partial y_i}}{\frac{\partial F(\mathbf{y})}{\partial y_i}}$$

- Since $F(\mathbf{y}) = 0$ we have $\frac{\partial F(\mathbf{y})}{\partial v_i} dy_i + \frac{\partial F(\mathbf{y})}{\partial v_i} dy_j = 0$
- Therefore, MRT is the slope of the transformation frontier at y.

Profits

Producers buy inputs and use them to produce and sell outputs to maximize profit.

Definition

A production set is a subset $Y \subseteq \mathbb{R}^n$.

- $\mathbf{y} = (y_1, ..., y_N) \in Y$ denotes feasible production (input-output) vectors.
 - Outputs are non-negative numbers and inputs are non-positive numbers:
 - $y_i \le 0$ when i is an input, and $y_i \ge 0$ if i is an output.
- Given a price vector $\mathbf{p} \in \mathbb{R}^n_{++}$, what is $\mathbf{p} \cdot \mathbf{y}$?
- ullet Given a price vector $\mathbf{p} \in \mathbb{R}^n_{++}$,

$$\mathbf{p} \cdot \mathbf{y} = \sum_{i=1}^{n} p_i y_i = p_1 y_1 + p_2 y_2 + ... + p_n y_n$$

are the firm's profits.

• How does this distinguish between revenues and costs?

Profit Maximization

Profit Maximizing Assumption

The firm's objective is to choose a production vector on the transformation frontier as to maximize profits given prices $\mathbf{p} \in \mathbb{R}^n_{++}$:

$$\max_{\mathbf{y} \in Y} \mathbf{p} \cdot \mathbf{y}$$

or equivalently

 $\max \mathbf{p} \cdot \mathbf{y}$ subject to $F(\mathbf{y}) \leq 0$

• Using the single output production function:

$$\max_{x \ge 0} pf(\mathbf{x}) - \mathbf{w} \cdot \mathbf{x}$$

where $p \in \mathbb{R}_{++}$ is the price of output and $\mathbf{w} \in \mathbb{R}_{++}^{I}$ is the price of inputs.

First Order Conditions For Profit Maximization

$$\max_{y} \mathbf{p} \cdot \mathbf{y}$$
 subject to $F(\mathbf{y}) = 0$

Lagrangean: $L = \mathbf{p} \cdot \mathbf{y} - \lambda(F(\mathbf{y}) - 0)$

• The FOC are: $p_i = \lambda \frac{\partial F(\mathbf{y})}{\partial y_i}$ for each i or $\mathbf{p} = \lambda \nabla F(\mathbf{y})$ in matrix form

$$\underbrace{\mathbf{p}}_{1\times n} = \lambda \underbrace{\nabla F(\mathbf{y})}_{1\times n} \text{ in matrix form}$$

Therefore

$$\frac{1}{\lambda} = \frac{\frac{\partial F(\mathbf{y})}{\partial y_i}}{p_i} \text{ for each } i$$

- the marginal product per dollar received or spent is equal across all goods.
- Using this formula, for two goods i and i:

$$\frac{\frac{\partial F(y)}{\partial y_i}}{\frac{\partial F(y)}{\partial y_i}} = MRT_{i,j} = \frac{p_i}{p_j} \text{ for each } i, j$$

the Marginal Rate of Transformation equals the price ratio.

Supply Correspondence and Profit Functions

Definition

Given a production set $Y \subseteq \mathbb{R}^n$, the supply correspondence $y^* : \mathbb{R}^n_{++} \to \mathbb{R}^n$ is:

$$y^*(\mathbf{p}) = \arg\max_{\mathbf{y} \in Y} \mathbf{p} \cdot \mathbf{y}.$$

Tracks the optimal choice as prices change (similar to Walrasian demand).

Definition

Given a production set $Y \subseteq \mathbb{R}^n$, the profit function $\pi : \mathbb{R}^n_{++} \to \mathbb{R}$ is:

$$\pi(\mathbf{p}) = \max_{\mathbf{y} \in Y} \mathbf{p} \cdot \mathbf{y}.$$

Tracks maximized profits as prices change (similar to indirect utility function).

Supply Correspondence and Profit Functions: Example

Definition

Given a production set $Y \subseteq \mathbb{R}^n$, the supply correspondence $y^* : \mathbb{R}^n_{++} \to \mathbb{R}^n$ is:

$$y^*(\mathbf{p}) = \arg\max_{\mathbf{y} \in Y} \mathbf{p} \cdot \mathbf{y}.$$

Definition

Given a production set $Y \subseteq \mathbb{R}^n$, the profit function $\pi : \mathbb{R}^n_{++} \to \mathbb{R}$ is:

$$\pi(\mathbf{p}) = \max_{\mathbf{y} \in Y} \mathbf{p} \cdot \mathbf{y}.$$

Proposition

If Y satisfies non decreasing returns to scale either $\pi(\mathbf{p}) \leq 0$ or $\pi(\mathbf{p}) = +\infty$.

Proof.

Question 4, Problem Set 7.

Properties of Supply and Profit Functions

Proposition

Suppose Y is closed and satisfies free disposal. Then:

- $y^*(\alpha \mathbf{p}) = y^*(\mathbf{p})$ for all $\alpha > 0$; and $\pi(\alpha \mathbf{p}) = \alpha \pi(\mathbf{p})$ for all $\alpha > 0$;
- π is convex in \mathbf{p} ;
- if Y is convex, then $y^*(\mathbf{p})$ is convex.
- The first follows from the obsevation that

$$y^*(\alpha \mathbf{p}) = \arg \max_{\mathbf{y} \in Y} \alpha \mathbf{p} \cdot \mathbf{y} = \alpha \arg \max_{\mathbf{y} \in Y} \mathbf{p} \cdot \mathbf{y} = \arg \max_{\mathbf{y} \in Y} \mathbf{p} \cdot \mathbf{y} = y^*(\mathbf{p}).$$

The Profit Function Is Convex

Proof.

Let $\mathbf{p}, \mathbf{p}' \in \mathbb{R}^n_{++}$ and let the corresponding profit maximizing solutions be \mathbf{y} and \mathbf{y}' . For any $\lambda \in (0,1)$ let $\tilde{\mathbf{p}} = \lambda \mathbf{p} + (1-\lambda) \mathbf{p}'$ and let $\tilde{\mathbf{y}}$ be the solution to the optimum when prices are $\tilde{\mathbf{p}}$.

• By "revealed preferences"

$$\mathbf{p} \cdot \mathbf{y} \ge \mathbf{p} \cdot \widetilde{\mathbf{y}}$$
 and $\mathbf{p}' \cdot \mathbf{y}' \ge \mathbf{p}' \cdot \widetilde{\mathbf{y}}$

ullet multiply these inequalities by λ and $1-\lambda$ respectively

$$\lambda \mathbf{p} \cdot \mathbf{y} \ge \lambda \mathbf{p} \cdot \widetilde{\mathbf{y}}$$
 and $(1 - \lambda) \mathbf{p}' \cdot \mathbf{y}' \ge (1 - \lambda) \mathbf{p}' \cdot \widetilde{\mathbf{y}}$

summing up

$$\lambda \mathbf{p} \cdot \mathbf{y} + (1 - \lambda) \mathbf{p}' \cdot \mathbf{y}' \ge [\lambda \mathbf{p} + (1 - \lambda) \mathbf{p}'] \cdot \widetilde{\mathbf{y}}$$

or

$$\lambda \pi \left(\mathbf{p} \right) + \left(1 - \lambda \right) \pi \left(\mathbf{p}' \right) \ge \pi \left(\lambda \mathbf{p} + \left(1 - \lambda \right) \mathbf{p}' \right)$$

proving convexity.

The Supply Correspondence Is Convex

Proof.

Let $\mathbf{p} \in \mathbb{R}^n_{++}$ and let $\mathbf{y}, \mathbf{y}' \in y^*(\mathbf{p})$.

We need to show that $\lambda \mathbf{y} + (1 - \lambda) \mathbf{y}' \in y^*(\mathbf{p})$ for any $\lambda \in (0, 1)$, if Y is convex.

By definition:

$$\mathbf{p}\cdot\mathbf{y}\geq\mathbf{p}\cdot\widetilde{\mathbf{y}}\qquad\text{for any }\widetilde{\mathbf{y}}\in Y\qquad\text{and}\qquad\mathbf{p}\cdot\mathbf{y}'\geq\mathbf{p}\cdot\widetilde{\mathbf{y}}\qquad\text{for any }\widetilde{\mathbf{y}}\in Y$$

ullet multiplying by λ and $1-\lambda$ we get

$$\lambda \mathbf{p} \cdot \mathbf{y} \ge \lambda \mathbf{p} \cdot \widetilde{\mathbf{y}}$$
 and $(1 - \lambda) \mathbf{p} \cdot \mathbf{y}' \ge (1 - \lambda) \mathbf{p} \cdot \widetilde{\mathbf{y}}$

• Therefore, summing up, we have

$$\lambda \mathbf{p} \cdot \mathbf{y} + (1 - \lambda) \mathbf{p} \cdot \mathbf{y}' \ge [\lambda + (1 - \lambda)] \mathbf{p} \cdot \widetilde{\mathbf{y}}$$

or

$$\mathbf{p} \cdot [\lambda \mathbf{y} + (1 - \lambda) \mathbf{y}'] \ge \mathbf{p} \cdot \widetilde{\mathbf{y}}$$

proving convexity of $y^*(\mathbf{p})$.

More Properties of Supply and Profit Functions

Proposition

Suppose Y is closed and satisfies free disposal. Then:

- if $|y^*(\mathbf{p})| = 1$, then π is differentiable at \mathbf{p} and $\nabla \pi(\mathbf{p}) = y^*(\mathbf{p})$ (Hotelling's Lemma).
- if $y^*(\mathbf{p})$ is differentiable at \mathbf{p} , then $Dy^*(\mathbf{p}) = D^2\pi(\mathbf{p})$ is symmetric and positive semidefinite with $Dy^*(\mathbf{p})\mathbf{p} = 0$ (Law of Supply).

Proof.

Question 5, Problem Set 7.

- The last result says $\frac{\partial y_i^*(\mathbf{p})}{\partial p_i} \geq 0$: quantity responds in the same direction as prices.
 - Notice that here y_i can be either input or output.
 - What does this mean for outputs? What does this mean for inputs?

Factor Demand, Supply, and Profit Function

• The previous concepts can be stated using the one-output production function.

Definition

Given $p \in \mathbb{R}_{++}$ and $\mathbf{w} \in \mathbb{R}_{++}^{I}$ and a production function $f : \mathbb{R}_{+}^{I} \to \mathbb{R}_{+}$, the firm's factor demand is $x^{*}(p, \mathbf{w}) = \arg\max\{py - \mathbf{w} \cdot \mathbf{x} \text{ subject to } f(\mathbf{x}) = y\} = \arg\max pf(\mathbf{x}) - \mathbf{w} \cdot \mathbf{x}.$

Definition

supply $y^*: \mathbb{R}'_{\perp} \to \mathbb{R}$ is defined by

Given $p \in \mathbb{R}_{++}$ and $\mathbf{w} \in \mathbb{R}_{++}^{I}$ and a production function $f : \mathbb{R}_{+}^{I} \to \mathbb{R}_{+}$, the firm's

Definition
Given $p \in \mathbb{R}_{++}$ and $\mathbf{w} \in \mathbb{R}_{++}^{I}$ and a production function $f : \mathbb{R}_{+}^{I} \to \mathbb{R}_{+}$, the firm's profit

 $y^{*}(p, \mathbf{w}) = f(x^{*}(p, \mathbf{w})).$

function
$$\pi: \mathbb{R}_{++} \times \mathbb{R}'_{++} \to \mathbb{R}$$
 is defined by
$$\pi(p, \mathbf{w}) = py^*(p, \mathbf{w}) - \mathbf{w} \cdot x^*(p, \mathbf{w}).$$

Factor Demand Properties

• Given these definitions, the following results "translate" the results for output sets to production functions.

Proposition

Given $p \in \mathbb{R}_{++}$ and $\mathbf{w} \in \mathbb{R}_{++}^{I}$ and a production function $f : \mathbb{R}_{+}^{I} \to \mathbb{R}_{+}$,

- $\pi(p, \mathbf{w})$ is convex in (p, \mathbf{w}) .
- ② $y^*(p, \mathbf{w})$ is non decreasing in p (i.e. $\frac{\partial y^*(p, \mathbf{w})}{\partial p} \ge 0$) and $x^*(p, \mathbf{w})$ is non increasing in w (i.e. $\frac{\partial x_i^*(p, \mathbf{w})}{\partial w_i} \le 0$) (Hotelling's Lemma).

Proof.

Exercise.

Cost Minimization (for one output production) Cost Minimizing

 Consider the single output case and suppose the firm wants to deliver a given output quantity at the lowest possible costs. The firm solves

 $\min \mathbf{w} \cdot \mathbf{x}$ subject to $f(\mathbf{x}) = \mathbf{y}$

Definition

• This has no simple equivalent in the output vector notation.

Given $\mathbf{w} \in \mathbb{R}_{++}^{I}$ and a production function $f: \mathbb{R}_{+}^{I} \to \mathbb{R}_{+}$, the firm's conditional factor demand is $x^*(\mathbf{w}, y) = \arg\min \{\mathbf{w} \cdot \mathbf{x} \text{ subject to } f(\mathbf{x}) = y\};$

Definition Given $\mathbf{w} \in \mathbb{R}_{++}^{I}$ and a production function $f: \mathbb{R}_{+}^{I} \to \mathbb{R}_{+}$, the firm's cost function

$$C: \mathbb{R}_{++}^I \times \mathbb{R}_+ \to \mathbb{R}$$
 is defined by

 $C(\mathbf{w}, y) = \mathbf{w} \cdot x^* (\mathbf{w}, y)$.

Proposition Proposition

Given a production function $f: \mathbb{R}^l_+ \to \mathbb{R}_+$, the corresponding cost function $C(\mathbf{w}, y)$ is concave in \mathbf{w} .

Exercise (Hint: use a 'revealed preferences' argument)

Shephard's Lemma

• Write the Lagrangian $L = \mathbf{w} \cdot \mathbf{x} - \lambda [f(\mathbf{x}) - y]$ • by the Envelope Theorem

$$\frac{\partial C(\mathbf{w}, y)}{\partial w_i} = \frac{\partial L}{\partial w_i} = x_i^* (\mathbf{w}, y)$$

Conditional factor demands are downward aloning

Conditional factor demands are downward sloping

Differentiating one more time: $\frac{\partial C^2(\mathbf{w},y)}{\partial w_i \partial w_i} = \frac{\partial x_i^*(\mathbf{w},y)}{\partial w_i} \leq 0$ where the inequality follows concavity of $C(\mathbf{w},y)$.

Geometry of Cost Functions

We can talk about the shape of cost functions as the quantity produced changes.

- In other words, fix **w** and let y change, and see what $C(\mathbf{w}, y)$ looks like.
- Here is an observation: consider the one input one output case and normalize the price of the input to 1; then, the cost curve is just the production set rotated by 90 degrees.
 - draw a picture
- The shape of the cost functions is driven by the shape of production set (the shape of the production function).

Next Class

- More on Cost Functions
- Short Run vs. Long Run
- Monopoly
- Aggregation